Probability and Statistics

$$
\text { Kristel Van Steen, PhD }{ }^{2}
$$

Montefiore Institute - Systems and Modeling GIGA - Bioinformatics
ULg

kristel.vansteen@ulg.ac.be

CHAPTER 8: RELATIONSHIPS

1 Introduction

2 Looking at data

2.2 Correlation

2.3 Least squares regression
2.4 Caution about correlation and regression
2.5 Data analysis for two-way tables
2.6 The question of causation

Use and abuse of the correlation coefficient

Pitfall: Correlation means causation

Correct: Correlation means linear covariation

```
PurchaseWarm Clothes \(\downarrow \longleftrightarrow \rho=0.90 \longrightarrow\) Purchase Ice Creams \(\uparrow\)
Salary \(\uparrow \Rightarrow\) FreeTime \(\downarrow\)
Education \(\uparrow \Rightarrow\) Salary \(\uparrow\}\)
```

Pitfall: Correlation measures all possible associations
1.0

Correct: Correlation measures only linear associations
To measure non-linear associations the coefficient of determination is used $\left(R^{2}\right)$

Pitfall: Correlation summarizes well the relationship between two variables

$$
\begin{aligned}
& \bar{y}=7.5 \\
& s_{Y}=4.12 \\
& y=3+0.5 x \\
& r=0.81
\end{aligned}
$$

:

.1

Correct: Visual inspection of the data structure is always needed

Is there any relationship between education and salary?

Person	Education	Salary \$
A	3 (High)	70 K
B	3 (High)	60 K
C	2 (Medium)	40 K
D	1 (Low)	20 K

Pitfall: Compute the correlation between a categorical/ordinal variable and an interval variable.
Correct:

- Use ANOVA and the coefficient of determination
- Use Kendall or Spearman's rank correlation coefficient (valid only for ordinal, not categorical, variables)

Is there any relationship between education and salary?

Person	Education	Salary
A	3 (High)	3 (High)
B	3 (High)	3 (High)
C	2 (Medium)	2 (Medium)
D	1 (Low)	1 (Low)

Pitfall: Compute the correlation between a two ordinal variables.
Correct:
Use Kendall or Spearman's rank correlation coefficient

Pitfall: Correlation between combinations with common variables

Village \#Women
\#Babies

\#Storks
\#Babies/\#Women
\#Storks/\#Women

```
VillageA ...
VillageB \(\quad \ldots \quad r_{\text {BabiesPerWoman,StorkPerToman }}=0.63!!\quad(p<0.00001)\)
VillageC ...
```


Pitfall: Correlation is invariant to changes in mean and variance

Three nurses take blood pressure from the same pool of patients:

- Nurse 1 takes the true value with some variance.
- Nurse 2 takes consistently larger values with the same variance as nurse 1 .
- Nurse 3 takes consistently smaller values with much less variance than the other 2 .

$$
\begin{aligned}
& r_{\text {Nurse1,Nurse2 }}=0.95 \\
& r_{\text {Nurse1,Nurse3 }}=0.97 \\
& r_{\text {Nurse2,Nurse3 }}=0.97
\end{aligned}
$$

All correlations are rather high
(meaning high agreement)
although the data is quite different

Solution: Assess agreement through bias, scale difference and accuracy

$$
E\left\{\left(X_{1}-X_{2}\right)^{2}\right\}=\left(\mu_{1}-\mu_{2}\right)^{2}+\left(\sigma_{1}-\sigma_{2}\right)^{2}+2(1-\rho) \sigma_{1} \sigma_{2}
$$

$$
\frac{E\left\{\left(X_{1}-X_{2}\right)^{2}\right\}}{2 \sigma_{1} \sigma_{2}}=\underbrace{\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{2 \sigma_{1} \sigma_{2}}}_{\text {Normalized bias }}+\underbrace{\frac{\left(\sigma_{1}-\sigma_{2}\right)^{2}}{2 \sigma_{1} \sigma_{2}}}_{\text {Normalized }}+\underbrace{(1-\rho)}_{\text {Accuracy }}
$$

	scale difference		
Nurse1 vs. Nurse2	1.01	$1 \mathrm{e}-5$	0.05
Nurse1 vs. Nurse3	0.51	$7 \mathrm{e}-4$	0.03
Nurse2 vs. Nurse3	3.05	$4 \mathrm{e}-4$	0.03

Are you able to answer these questions?

1. Why is there no distinction between explanatory and response variables in correlation?
2. Why do both variables have to be quantitative?
3. How does changing the units of measurement affect correlation?
4. What is the effect of outliers on correlations?
5. Why doesn't a tight fit to a horizontal line imply a strong correlation?

2.3 Least squares regression

Correlation tells us about strength (scatter) and direction of the linear relationship between two quantitative variables.

In addition, we would like to have a numerical description of how both variables vary together. For instance, is one variable increasing faster than the other one? And we would like to make predictions based on that numerical description.

But which line best
describes our data?

The regression line

- A regression line is a straight line that describes how a response variable y changes as an explanatory variable x changes.
- We often use a regression line to predict the value of y for a given value of x.
- In regression, the distinction between explanatory and response variables is important.

The least-squares regression line is the unique line such that the sum of the squared vertical (y) distances between the data points and the line is as small as possible.

Properties

The least-squares regression line can be shown to have this equation:

$$
\hat{y}=b_{0}+b_{1} x
$$

How to ...

First we calculate the slope of the line, $b_{1} ;$ from statistics we already know: r is the correlation. s_{s} is the standard deviation of the response variable y. s_{x} is the the standard deviation of the explanatory variable x.
Once we know b_{1}, the slope, we can calculate b_{0}, the y-intercept:
$b_{0}=\bar{y}-b_{1} \bar{x} \quad$where \bar{x} and \bar{y} are the sample means of the x and y variables

Typically, we use a 2-var stats calculator or stats software.

Examples of software output

Exce!

Always check the manuals for conventions

Not all calculators and software use the same convention. Some use:

$$
\hat{y}=a+b x
$$

And some use:

$$
\hat{y}=a x+b
$$

Make sure you know what YOUR
calculator gives you for a and b before
you answer homework or exam questions.

```
Texas Instruments TI-83 Plus
LinReg
    \(y=a+b x\)
    \(=31.93425919\)
    \(b=-.3040229451\)
    \(r^{2}=.5602033042\)
    \(r=-.7484673034\)
```

The equation completely describes the regression line.
To plot the regression line you only need to plug two x values into the equation, get y, and draw the line that goes through those points.

Hint: The regression line always passes through the mean of x and y .

The points you use for drawing the regression line are derived from the equation.

They are NOT points from your sample data (except by pure coincidence).

The distinction between explanatory and response variables is crucial in regression. If you exchange y for x in calculating the regression line, you will get the wrong line.

Regression examines the distance of all points from the line in the y direction only.

Hubble telescope data about galaxies moving away from earth:

These two lines are the two regression lines calculated either correctly ($x=$ distance, $y=$ velocity, solid line) or incorrectly ($x=$ velocity, $y=$ distance, dotted line).

Correlation versus regression

Time z-scores

The correlation is a measure of spread (scatter) in both the x and y directions in the linear relationship.

In regression we examine the variation in the response variable (y) given change in the explanatory variable (x).

Making predictions

The equation of the least-squares regression allows you to predict y for any x within the range studied.

(in TUUUS)		
Year	Powertoats	Dead Menatees
1977	447	13
1978	480	21
1978	481	24
1880	488	16
1981	513	24
1982	512	20
1983	526	15
1984	559	34
1985	585	33
1986	814	33
1987	645	39
1988	675	43
1989	711	50
1990	719	47

There is a positive linear relationship between the number of powerboats registered and the number of manatee deaths.

The least squares regression line has the equation: $\hat{y}=0.125 x-41.4$
Thus if we were to limit the number of powerboat registrations to 500,000 , what could we expect for the number of manatee deaths?

$$
\hat{y}=0.125(500)-41.4 \Rightarrow \hat{y}=62.5-41.4=21.1
$$

Roughly 21 manatees.

Extrapolation

Extrapolation is the use of a regression line for predictions outside the range of x values used to obtain the line.

This can be a very stupid thing to do, as seen here.

The y intercept

Sometimes the y-intercept is not biologically possible. Here we have negative blood alcohol content, which makes no sense...

But the negative value is appropriate for the equation of the regression line.

There is a lot of scatter in the data, and the line is just an estimate.

Coefficient of determination r^{2}

r^{2}, the coefficient of determination, is the square of the correlation coefficient.

Blood Alcahol Content as a function of Number of Beets

Blood alcohol as a function of number of beers

There is quite some variation in BAC for the same number of beers drank. A person's blood volume is a factor in the equation that was overlooked here.

We changed number of beers to number of beers/weight of person in lb.

- In the first plot, number of beers only explains 49% of the variation in blood alcohol content.
- But number of beers / weight explains 81% of the variation in blood alcohol content.
- Additional factors contribute to variations in BAC among individuals (like maybe some genetic ability to process alcohol).

Grade performance

If class attendance explains 16% of the variation in grades, what is the correlation between percent of classes attended and grade?

1. We need to make an assumption: attendance and grades are positively correlated. So r will be positive too.
2. $r^{2}=0.16$, so $r=+\sqrt{0.16}=+0.4$

A weak correlation.

Different measures of association

- Correlation coefficient: How much of Y can I explain given X ?
- Pearson's correlation coefficient: for continuous variables.
- Kendall's rank correlation coefficient
- Spearman's rank correlation coefficient
- Coefficient of determination (R^{2}): when a model is available
- Multiple correlation coefficient: How much of Y can I explain given X_{1} and X_{2} ?
- Partial correlation coefficient: How much of Y can I explain given X_{1} once I remove the variability of Y due to X_{2} ?
- Part correlation coefficient: How much of Y can I explain given X_{1} once I remove the variability of X_{1} due to X_{2} ?

Transforming relationships

A scatterplot might show a clear relationship between two quantitative variables, but issues of influential points or nonlinearity prevent us from using correlation and regression tools.

Transforming the data - changing the scale in which one or both of the variables are expressed - can make the shape of the relationship linear in some cases.

Example: Patterns of growth are often exponential, at least in their initial phase. Changing the response variable y into $\log (y)$ or $\ln (y)$ will transform the pattern from an upward-curved exponential to a straight line.

Exponential bacterial growth

In ideal environments, bacteria multiply through binary fission. The number of bacteria can double every 20 minutes in that way.

$$
1-2-4-8-16-32-64-\ldots
$$

Exponential growth 2^{n}, not suitable for regression.

$$
\log \left(2^{n}\right)=n^{\star} \log (2) \approx 0.3 n
$$

Taking the log changes the growth pattern into a straight line.

Body weight and brain weight in 96 mammal species

$$
r=0.86 \text {, but this is misleading. }
$$

The elephant is an influential point. Most mammals are very small in comparison.

Without this point, $r=0.50$ only.

Now we plot the log of brain weight against the log of body weight.

The pattern is linear, with $r=0.96$.
The vertical scatter is homogenous
\rightarrow good for predictions of brain weight
from body weight (in the log scale).

2.4 Caution about correlation and regression

Using averages

Many regression or correlation studies use average data.

While this is appropriate, you should know that correlations based on averages are usually quite higher than those made on the raw data.

The correlation is a measure of spread (scatter) in a linear relationship. Using averages greatly reduces the scatter.

Therefore, r and r^{2} are typically greatly increased when averages are used.

Each dot represents an average. The variation among boys per age class is not shown.

These histograms illustrate that each mean represents a distribution of boys of a particular age.

Should parents be worried if their son does not match the point for his age? If the raw values were used in the correlation instead of the mean, there would be a lot of spread in the y-direction, and thus the correlation would be smaller.

That's why typically growth charts show a range of values (here from 5th to 95th percentiles).

This is a more comprehensive way of displaying the same information.

Residuals

The distances from each point to the least-squares regression line give us potentially useful information about the contribution of individual data points to the overall pattern of scatter.

Residual plots

Residuals are the distances between y-observed and y-predicted. We plot them in a residual plot.

If residuals are scattered randomly around 0 , chances are your data fit a linear model, was normally distributed, and you didn't have outliers.

Residuals are randomly scattered—good!

Curved pattern-means the relationship you are looking at is not linear.

A change in variability across a plot is a warning sign. You need to find out why it is, and remember that predictions made in areas of larger variability will not be as good.

Outliers and influential points

Outlier: observation that lies outside the overall pattern of observations.
"Influential individual": observation that markedly changes the regression if removed. This is often an outlier on the x-axis.

Child 19 is an outlier of the relationship.

Child 18 is only an outlier in the x direction and thus might be an influential point.

Are these points influential?

Always visualize (part of your) data

A correlation coefficient and a regression line can be calculated for any relationship between two quantitative variables. However, outliers greatly influence the results, and running a linear regression on a nonlinear association is not only meaningless but misleading.

So make sure to always plot your data before you run a correlation or regression analysis.

The correlations all give $r \approx 0.816$, and the regression lines are all approximately $\hat{y}=3+0.5 x$. For all four sets, we would predict $\hat{y}=8$ when $x=10$.

Table 2.8 Four data sets for exploring correlation and regression
Data Set A

x	10	8	13	9	11	14	6	4	12	7	5
y	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Data Set B

x	10	8	13	9	11	14	6	4	12	7	5
y	9.14	8.14	8.74	8.77	9.26	8.10	6.13	3.10	9.13	7.26	4.74

Data Set C

x	10	8	13	9	11	14	6	4	12	7	5
y	7.46	6.77	12.74	7.11	7.81	8.84	6.08	5.39	8.15	6.42	5.73

Data Set D

x	8	8	8	8	8	8	8	8	8	8	19
y	6.58	5.76	7.71	8.84	8.47	7.04	5.25	5.56	7.91	6.89	12.50

Socurce: Frank J. Anscombe, 'Graphs in statistioal analy xis," "The American Statisticiam, 27 (1973). pp. 17-21.

However, making the scatterplots shows us that the correlation/
regression analysis is not appropriate for all data sets.

Moderate linear association; regression OK.

Obvious nonlinear relationship; regression not OK.

One point deviates from the highly linear pattern; this outlier must be examined closely before proceeding.

Just one very influential point; all other points have the same x value; a redesign is due here.

Lurking variables

A lurking variable is a variable not included in the study design that does have an effect on the variables studied.

Lurking variables can falsely suggest a relationship.

What is the lurking variable in these examples?
How could you answer if you didn't know anything about the topic?

- Strong positive association between number of firefighters at a fire site and the amount of damage a fire does.

- Negative association between moderate amounts of wine drinking and death rates from heart disease in developed nations.

Blood Aicohol Content as a functhen of Nurnber of Beers

There is quite some variation in BAC for the same number of beers drank. A person's blood volume is a factor in the equation that we have overlooked.

Now we change number of beers to number of beers/weight of person in lb.

The scatter is much smaller now. One's weight was indeed influencing the response variable "blood alcohol content."

Lurking versus confounding

- A lurking variable is a variable that is not among the explanatory or response variables in a study and yet may influence the interpretation of relationships among those variables.
- Two variables are confounded when their effects on a response variable cannot be distinguished from each other. The confounded variables may be either explanatory variables or lurking variables.
- Association is not causation. Even if an association is very strong, this is not by itself good evidence that a change in x will cause a change in y.
- Even if an association is very strong, this is not by itself good evidence that a change in x will cause a change in y

Before rushing into a correlation or regression analysis

- Do not use a regression on inappropriate data.
\checkmark Pattern in the residuals
$\left.\begin{array}{l}\checkmark \text { Presence of large outliers } \\ \checkmark \text { Clumped data falsely appearing linear }\end{array}\right\}$ Use residual plots for help.
- Beware of lurking variables.
- Avoid extrapolating (going beyond interpolation).
- Recognize when the correlation/regression is performed on averages.
- A relationship, however strong it is, does not itself imply causation.

2.5 Data analysis for two-way tables

An experiment has a two-way, or block, design if two categorical factors are studied with several levels of each factor.

Two-way tables organize data about two categorical variables obtained from a two-way, or block, design. (There are now two ways to group the data).

- We call education the row variable and age group the column variable.
- Each combination of values for these two variables is called a cell.
- For each cell, we can compute a proportion by dividing the cell entry by the total sample size. The collection of these proportions would be the joint distribution of the two variables.

Years of school completed, by age (thousands of persons)			
	Age group		
Education	25 to 34	35 to 54	55 and over
Did not complete high school	4,459	9,174	14,226
Completed high school	11,562	26,455	20,060
College, 1 to 3 years	10,693	22,647	11,125
College, 4 or more years	11,071	23,160	10,597

Marginal distributions

We can look at each categorical variable separately in a two-way table by studying the row totals and the column totals. They represent the marginal distributions, expressed in counts or percentages (They are written as if in a margin.)

Years of school completed, by age (thousands of persons)				
Education	25 to 34	Age group		Total
		35 to 54	55 and over	
Did not complete high school	4,459	9,174	14,226	27,859
Completed high school	11,562	26,455	20,060	58,077
College, 1 to 3 years	10,693	22,647	11,125	44,465
College, 4 or more years	11,071	23,160	10,597	44,828
Total	37,786	81,435	56,008	175,230

2000 U.S. census

The marginal distributions can then be displayed on separate bar graphs, typically expressed as percents instead of raw counts. Each graph represents only one of the two variables, completely ignoring the second one.

Parental smoking

Does parental smoking influence the smoking habits of their high school children?

Summary two-way table:		Student	Student Smokes does not smoke	Total	
High school students were		Both parents smoke	332.49	1447.51	1780
asked whether they	One parent smokes	418.22	1820.78	2239	
smoke and whether their		Neither parent smokes	253.29	1102.71	1356
parents smoke.	Total	1004	4371	5375	

Marginal distribution for the categorical variable "parental smoking": The row totals are used and re-expressed as percent of the grand total.

Neither parent smokes	One parent smokes	Both parents smoke
13.9%	18.6%	22.5%

The percents are then displayed in a bar graph.

Relationship between categorical variables

The marginal distributions summarize each categorical variable independently. But the two-way table actually describes the relationship between both categorical variables.

The cells of a two-way table represent the intersection of a given level of one categorical factor and a given level of the other categorical factor.

Conditional distribution

- In the table below, the 25 to 34 age group occupies the first column. To find the complete distribution of education in this age group, look only at that column. Compute each count as a percent of the column total.
- These percents should add up to 100\% because all persons in this age group fall into one of the education categories. These four percents together are the conditional distribution of education, given the 25 to 34 age group.

Years of school completed, by age (thousands of persons)				
	Age group			
Education	25 to 34	35 to 54	55 and over	Total
Did not complete high school	4,459	9,174	14,226	27,859
Completed high school	11,562	26,455	20,060	58,077
College, 1 to 3 years	10,693	22,647	11,125	44,465
College, 4 or more years	11,071	23,160	10,597	44,828
Total	37,786	81,435	56,008	175,230

2000 U.S. census

The percents within the table represent the conditional distributions.
Comparing the conditional distributions allows you to describe the "relationship" between both categorical variables.

Vears ofschol compleed. brame (thassmonds of persoms)						to 34	35 to 54	55 up	All
Btaxation	2504	$\frac{A_{\mathrm{g}}^{\mathrm{g}} \mathrm{grom}}{35 \operatorname{to54}}$	55 and wer	Txal	1:NotHS	11.80	9174	14226	27859
Did not complere high whonCompletod high shool Camplced dhinh staol College, 4 or more years				27,90			11.27	25.40	58.977
	${ }_{\substack{11.562 \\ 10.693}}^{1}$	${ }_{\substack{2,6459 \\ 2.697}}^{\substack{\text { a }}}$	$\begin{aligned} & 20200012 \\ & 10,155 \end{aligned}$	$\begin{aligned} & \text { Sisicin7 } \\ & 44,465 \end{aligned}$	2:HSgrad	11562	26455	20060	
						30.60	32.49	35.82	33.14
Toxal	37,36	81,45	560088	175,20	3:SomeCo	$\begin{array}{r} 10693 \\ \hline 28.30 \end{array}$	22647	11125	44465
		Here	the				27.81	19.86	25.38
		percen	ts are		4:CollGr	11071	23160	10597	44828
	ca	culate	d by			29.30	28.44	18.92	25.58
		ge (c			All	37785	81436	56008	175229
			$\begin{aligned} & 6=\frac{11}{37} \\ & \text { ell total } \end{aligned}$	$\frac{071}{785}$		$\begin{aligned} & 100.00 \\ & \text { nts- } \\ & \text { Count } \\ & \% \text { of } \\ & \hline \end{aligned}$	100.00	100.00	100.00

The conditional distributions can be graphically compared using side by side bar graphs of one variable for each value of the other variable.

Music and wine purchase decision

What is the relationship between type of music played in supermarkets and type of wine purchased?

	Music			
	Wine	None	French	Italian
Total				
French	30	39	30	99
Italian	11	1	19	31
Other	43	35	35	113
Total	84	75	84	243
the response				
lanatory				

Calculations: When no music was played, there were 84 bottles of wine sold. Of these, 30 were French wine. $30 / 84=0.357 \rightarrow 35.7 \%$ of the wine sold was French when no music was played.

We calculate the column conditional percents similarly for each of the nine cells in the table:

For every two-way table, there are two sets of possible conditional distributions.

	Music			
Wine	None	French	Italian	Total
French	30	39	30	99
Italian	11	1	19	31
Other	43	35	35	113
Total	84	75	84	243

Does background music in supermarkets influence customer purchasing
decisions?

Wine purchased for each kind of music played (column percents)

Music played for each kind of wine purchased (row percents)

Simpson's paradox

An association or comparison that holds for all of several groups can reverse direction when the data are combined (aggregated) to form a single group. This reversal is called Simpson's paradox.

Example: Hospital death rates

	Hospital A	Hospital B
Died	63	16
Survived	2037	784
Total	2100	800
$\%$ surv.	97.0%	98.0%

On the surface, Hospital B would seem to have a better record.

But once patient condition is taken into account, we see that hospital A has in fact a better

Patients in good condition

	Hospital A	Hospital B
Died	6	8
Survived	594	592
Total	600	600
$\%$ surv.	99.0%	98.7%

Patients in poor condition

	Hospital A	Hospital B
Died	57	8
Survived	1443	192
Total	1500	200
$\%$ surv.	96.2%	96.0%

Here, patient condition was the lurking variable.

2.6 The question of causation

Explaining association: causation

- Association, however strong, does NOT imply causation.
- Example 1: Daughter's body mass index depends on mother's body mass index. This is an example of direct causation.
- Example 2: Married men earn more than single men. Can a man raise his income by getting married?
- Only careful experimentation can show causation.

Not all examples are so obvious...

Explaining association: common response

- Students who have high SAT scores in high school have high GPAs in their first year of college.
- This positive correlation can be explained as a common response to students' ability and knowledge.
- The observed association between two variables x and y could be explained by a third lurking variable z.
- Both x and y change in response to changes in z. This creates an association even though there is no direct causal link.

Explaining association: confounding

- Two variables are confounded when their effects on a response variable cannot be distinguished from each other. The confounded variables may be either explanatory variables or lurking variables.
- Example: Studies have found that religious people live longer than nonreligious people.
- Religious people also take better care of themselves and are less likely to smoke or be overweight.

Some possible explanations for an observed association. The dashed lines show an association. The solid arrows show a cause-and-effect link. x is explanatory, y is response, and z is a lurking variable.

Intraduction to the Practice of Statistics, Sixth Edition
© 2009 W.H. Freeman and Company

Establishing causation

It appears that lung cancer is associated with smoking.
How do we know that both of these variables are not being affected by an unobserved third (lurking) variable?

For instance, what if there is a genetic predisposition that causes people to both get lung cancer and become addicted to smoking, but the smoking itself doesn't CAUSE lung cancer?

We can evaluate the association using the following criteria:

1) The association is strong.
2) The association is consistent.
3) Higher doses are associated with stronger responses.
4) Alleged cause precedes the effect.
5) The alleged cause is plausible.
